
PRESENTS

Kyverno Fuzzing Audit
In collaboration with the Kyverno project maintainers and The Linux Foundation

Authors
Adam Korczynski <adam@adalogics.com>
David Korczynski <david@adalogics.com>
Date: 6th September 2023

This report is licensed under Creative Commons 4.0 (CC BY 4.0)

mailto:adam@adalogics.com
mailto:david@adalogics.com

CNCF security and fuzzing audits
This report details a fuzzing audit commissioned by the CNCF and the engagement is part
of the broader efforts carried out by CNCF in securing the so�ware in the CNCF landscape.
Demonstrating and ensuring the security of these so�ware packages is vital for the CNCF
ecosystem and the CNCF continues to use state of the art techniques to secure its projects
as well as carrying out manual audits. Over the last handful of years, CNCF has been
investing in security audits, fuzzing and so�ware supply chain security that has helped
proactively discover and fix hundreds of issues.

Fuzzing is a proven technique for finding security and reliability issues in so�ware and the
efforts so far have enabled fuzzing integration into more than twenty CNCF projects
through a series of dedicated fuzzing audits. In total, more than 350 bugs have been found
through fuzzing of CNCF projects. The fuzzing efforts of CNCF have focused on enabling
continuous fuzzing of projects to ensure continued security analysis, which is done by way
of the open source fuzzing project OSS-Fuzz1.

CNCF continues work in this space and will further increase investment to improve
security across its projects and community. The focus for future work is integrating fuzzing
into more projects, enabling sustainable fuzzer maintenance, increasing maintainer
involvement and enabling fuzzing to find more vulnerabilities in memory safe languages.
Maintainers who are interested in getting fuzzing integrated into their projects or have
questions about fuzzing are encouraged to visit the dedicated cncf-fuzzing repository
https://github.com/cncf/cncf-fuzzing where questions and queries are welcome.

1 https://github.com/google/oss-fuzz

https://github.com/cncf/cncf-fuzzing
https://github.com/google/oss-fuzz

Executive summary
In this engagement, Ada Logics worked on setting up Kyrano's fuzzing suite. At the time of
this engagement, Kyverno was not integrated into OSS-Fuzz, and the goal of this fuzzing
audit was to first integrate Kyverno into OSS-Fuzz and then build upon this integration and
improve the fuzzing efforts in a continuous manner.

We carried out the development of the fuzzers in the CNCF-Fuzzing repository and we
moved the fuzzers upstream to Kyvernos own repository at the end of the engagement.
Working from the CNCF-Fuzzing repository allowed the Ada Logics team tomake smaller
iterations of the fuzzers throughout the audit and avoid imposing the overhead of having
the Kyvernomaintainers review trivial changes to the fuzzers. OSS-Fuzz was instructed to
pull the fuzzers from CNCF-Fuzzing in addition to the fuzzers from Kyvernos repository.

The fuzzers found 3 code issues during the audit itself demonstrating the value that the
fuzzing suite adds to Kyverno. Over time, the fuzzers will explore more of the Kyverno code
base, and they may report issues that exist in the code base during the audit but are hard
to find.

Results summarised
15 fuzzers developed

All fuzzers added to Kyvernos OSS-Fuzz integration

All fuzzers added to Kyvernos upstream repository

3 bugs found during the audit

Table of Contents

CNCF security and fuzzing audits 2
Executive summary 3
Table of Contents 4
Project Summary 5
Kyverno fuzzing 6
Issues found during audit 12

Project Summary
Ada Logics auditors

Name Title Email

Adam Korczynski Security Engineer Adam@adalogics.com

David Korczynski Security Researcher David@adalogics.com

Kyvernomaintainers involved in the audit

Name Title Email

Chip Zoller Kyverno Maintainer chipzoller@gmail.com

Jim bugwadia Kyverno Maintainer jim@nirmata.com

Assets

Url Branch

https://github.com/kyverno/kyverno main

https://github.com/kyverno/kyverno

Kyverno fuzzing
In this section we present details on the Kyverno fuzzing set up, and in particular the
overall fuzzing architecture as well as the specific fuzzers developed.

Architecture
A central component in Kyvernos fuzzing suite is the element of continuity by way of
OSS-Fuzz. The Kyverno source code and the source code for the Kyverno fuzzers are the
two key so�ware packages that OSS-Fuzz uses to fuzz Kyverno. The following figure gives
an overview of how OSS-Fuzz uses these two packages and what happens when an issue is
found/fixed.

Figure 1.1: Kyvernos fuzzing architecture

The current OSS-Fuzz set up builds the fuzzers by cloning the upstream Kyverno Github
repositories to get the latest Kyverno source code and the CNCF-Fuzzing Github repository
to get the latest set of fuzzers, and then builds the fuzzers against the cloned Kyverno
code. As such, the fuzzers are always run against the latest Kyverno commit.

This build cycle happens daily and OSS-Fuzz will verify if any existing bugs have been
fixed. If OSS-fuzz finds that any bugs have been fixed OSS-Fuzz marks the crashes as fixed
in the Monorail bug tracker and notifies maintainers.

In each fuzzing iteration, OSS-Fuzz uses its corpus accumulated from previous fuzz runs. If
OSS-Fuzz detects any crashes when running the fuzzers, OSS-Fuzz performs the following
actions:

1. A detailed crash report is created.
2. An issue in the Monorail bug tracker is created.
3. An email is sent to maintainers with links to the report and relevant entry in the

bug tracker.

OSS-Fuzz has a 90 day disclosure policy, meaning that a bug becomes public in the bug
tracker if it has not been fixed. The detailed report is never made public. The Kyverno
maintainers will fix issues upstream, and OSS-Fuzz will pull the latest Kyvernomain branch
the next time it performs a fuzz run and verify that a given issue has been fixed.

Kyverno Fuzzers
In this section we enumerate the fuzzers that Ada Logics wrote during the fuzzing audit. A
high level goal was to achieve a high level of test coverage, since Kyverno had no coverage
prior to this fuzzing audit. Ada Logics analyzed the codebase initially both manually and by
way of static analysis tooling to identify the optimal entrypoints to achieve the highest
coverage without bloating the test suite with unnecessary fuzz tests. Our initial analysis
found that the majority of the Kyverno code base is statically reachable from three APIʼs in
the github.com/kyverno/kyverno/pkg/engine package:

API

1 github.com/kyverno/kyverno/pkg/engine.(*engine).Validate

2 github.com/kyverno/kyverno/pkg/engine.(*engine).VerifyAndPatchImages

3 github.com/kyverno/kyverno/pkg/engine.(*engine).Mutate

Because these APIs have a lot of code to discover, we optimized the fuzzers for these
entrypoints by structuring the data that the fuzzers pass to the entrypoints, such that the
fuzzers reach deep into the call tree easier than with raw bytes. A substantial hurdle for the
fuzzers was to generate valid policies with valid rules. We overcame this hurdle by
implementing a utility function that creates policies and rules in a structured way in which
the fuzzer decides howmany rules to add, which specifications they should have and what
the values of each specification should be.

Below we enumerate all fuzzers written during the audit.

Fuzzers
This table lists all fuzzers Ada Logics wrote during the engagement. The Name is the name
of each fuzzer, and the package is both the package that the fuzzer targets as well as where
it is hosted in the Kyverno source tree. The fuzzers are first listed in a table, and we then
detail which Kyverno APIs they target specifically and how they generate the necessary
parameters for those APIs.

Name Package

1 FuzzEvaluate github.com/kyverno/kyverno/pkg/engine/varia
bles

2 FuzzV2beta1PolicyValidate github.com/kyverno/kyverno/api/kyverno/v2be
ta1

3 FuzzV2beta1ImageVerificati
on

github.com/kyverno/kyverno/api/kyverno/v2be
ta1

4 FuzzV2beta1MatchResources github.com/kyverno/kyverno/api/kyverno/v2be
ta1

5 FuzzV2beta1ClusterPolicy github.com/kyverno/kyverno/api/kyverno/v2be
ta1

6 FuzzV1PolicyValidate github.com/kyverno/kyverno/api/kyverno/v1

7 FuzzV1ImageVerification github.com/kyverno/kyverno/api/kyverno/v1

8 FuzzV1MatchResources github.com/kyverno/kyverno/api/kyverno/v1

9 FuzzV1ClusterPolicy github.com/kyverno/kyverno/api/kyverno/v1

10 FuzzVerifyImageAndPatchTes
t

github.com/kyverno/kyverno/pkg/engine

11 FuzzEngineValidateTest github.com/kyverno/kyverno/pkg/engine

12 FuzzMutateTest github.com/kyverno/kyverno/pkg/engine

13 FuzzValidatePolicy github.com/kyverno/kyverno/pkg/validation/p

olicy

14 FuzzAnchorParseTest github.com/kyverno/kyverno/pkg/engine/ancho
r

15 FuzzEngineResponse github.com/kyverno/kyverno/pkg/engine/api

FuzzEvaluate
Tests Kyvernos condition evaluation routine,
github.com/kyverno/kyverno/pkg/engine/variables.Evaluate. The fuzzer creates a
condition type with a random key, a known operator and a random value and then passes
the condition onto the evaluation routine.

FuzzV2beta1PolicyValidate
Tests Kyvernos validation API for v2beta1 policies. The fuzzer creates a random policy and
invokes its Validate()method.

FuzzV2beta1ImageVerification
Tests Kyvernos validation API for the v2beta1 ImageVerification type. The fuzzer creates
a random ImageVerification struct and invokes its Validate()method.

FuzzV2beta1MatchResources
Tests Kyvernos validation APIs for the v2beta1 MatchResources type. The fuzzer creates a
random MatchResources struct and invokes its ValidateResourceWithNoUserInfo()
and Validate()methods.

FuzzV2beta1ClusterPolicy
This fuzzer tests multiple methods of the v2beta1 ClusterPolicy type. The fuzzer creates
a random ClusterPolicy and invokes the following methods:

● HasAutoGenAnnotation()

● HasMutateOrValidateOrGenerate()

● HasMutate()

● HasValidate()

● HasGenerate()

● HasVerifyImages()

● AdmissionProcessingEnabled()

● BackgroundProcessingEnabled()

● Validate(nil)

FuzzV1PolicyValidate
Tests Kyvernos validation API for v1 policies. The fuzzer creates a random policy and
invokes its Validate()method.

FuzzV1ImageVerification
Tests Kyvernos validation API for the v1 ImageVerification type. The fuzzer creates a
random ImageVerification type and invokes its Validate()method.

FuzzV1MatchResources
Tests Kyvernos validation APIs for the v1 MatchResources type. The fuzzer creates a
random MatchResources struct and invokes its ValidateResourceWithNoUserInfo()
and Validate()methods.

FuzzV1ClusterPolicy
This fuzzer tests multiple methods of the v1 ClusterPolicy type. The fuzzer creates a
random ClusterPolicy and invokes the following methods:

● HasAutoGenAnnotation()

● HasMutateOrValidateOrGenerate()

● HasMutate()

● HasValidate()

● HasGenerate()

● HasVerifyImages()

● AdmissionProcessingEnabled()

● BackgroundProcessingEnabled()

● Validate(nil)

FuzzVerifyImageAndPatchTest
Tests github.com/kyverno/kyverno/pkg/engine.(*engine).VerifyAndPatchImages
with a randomized policy, resource and old resource. The fuzzer first creates a context
which contains the Kyverno policy and the two Kubernetes resources. It then passes the
context onto
github.com/kyverno/kyverno/pkg/engine.(*engine).VerifyAndPatchImages.

FuzzEngineValidateTest
Tests github.com/kyverno/kyverno/pkg/engine.(*engine).Validatewith a
randomized policy and resource. The fuzzer first creates a policy and then a policycontext
which contains the Kubernetes resource. It then passes both onto
github.com/kyverno/kyverno/pkg/engine.(*engine).Validate.

FuzzMutateTest
Tests github.com/kyverno/kyverno/pkg/engine.(*engine).Mutatewith a randomized
policy and resource. The fuzzer first creates a policy and a resource. It then creates a
policycontext which contains the Kubernetes resource. It then passes both onto
github.com/kyverno/kyverno/pkg/engine.(*engine).Mutate.

FuzzValidatePolicy
Tests github.com/kyverno/kyverno/pkg/validation/policy.Validatewith a
randomized Kyverno ClusterPolicy.

FuzzAnchorParseTest
Tests the parsing routine for anchors in the
github.com/kyverno/kyverno/pkg/engine/anchor package. The parser is based on a
regular expression and the fuzzer tests this regexʼes safety.

FuzzEngineResponse
Tests the engine response type and whether a malicious resource can cause disruption
when creating an engine response or when the created response invokes any of its
methods.

Issues found during audit
The fuzzers found 3 issues during the audit all of which Ada Logics fixed in Kyverno. The
three issues had their root cause in the Kyverno code base.

Issue 1: Type confusion in policy validation routine

OSS-Fuzz bug tracker: https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=60714

Mitigation: Fixed in https://github.com/kyverno/kyverno/pull/7857

ID: ADA-KYV-FUZZ-1

A fuzzer was able to pass a policy to
github.com/kyverno/kyverno/pkg/validation/policy.Validate that triggered a type
confusion on the lines below:

https://github.com/kyverno/kyverno/blob/dfceb4bf821feea15c2d86b2f76f2a4448fc1582/pkg/validation/poli
cy/validate.go#L498

func cleanup(policy kyvernov1.PolicyInterface) kyvernov1.PolicyInterface {

ann := policy.GetAnnotations()

if ann != nil {

ann["kubectl.kubernetes.io/last-applied-configuration"] = ""

policy.SetAnnotations(ann)

}

if policy.GetNamespace() == "" {

pol := policy.(*kyvernov1.ClusterPolicy)

pol.Status.Autogen.Rules = nil

return pol

} else {

pol := policy.(*kyvernov1.Policy)

pol.Status.Autogen.Rules = nil

return pol

}

}

The issue was fixed by adding a type check before casting. When triaging this issue, we
found another similar issue which we also fixed in the same PR.

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=60714
https://github.com/kyverno/kyverno/pull/7857
https://github.com/kyverno/kyverno/blob/dfceb4bf821feea15c2d86b2f76f2a4448fc1582/pkg/validation/policy/validate.go#L498
https://github.com/kyverno/kyverno/blob/dfceb4bf821feea15c2d86b2f76f2a4448fc1582/pkg/validation/policy/validate.go#L498

Issue 2: Assignment to nil-map in policy validation

OSS-Fuzz bug tracker: https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=60759

Mitigation: Fixed in https://github.com/kyverno/kyverno/pull/7874

ID: ADA-KYV-FUZZ-2

The policy validation fuzzer found an assignment to a nil-map when Kyverno validates the
namespace on the highlighted line below:

https://github.com/kyverno/kyverno/blob/7647a1632dd6af71ff35d001edaff88e874a0708/pkg/validation/po
licy/validate.go#L1280

func validateNamespaces(s *kyvernov1.Spec, path *field.Path) error {

action := map[string]sets.Set[string]{

"enforce": sets.New[string](),

"audit": sets.New[string](),

"enforceW": sets.New[string](),

"auditW": sets.New[string](),

}

for i, vfa := range s.ValidationFailureActionOverrides {

patternList, nsList := wildcard.SeperateWildcards(vfa.Namespaces)

if vfa.Action.Audit() {

if action["enforce"].HasAny(nsList...) {

return fmt.Errorf("conflicting namespaces found in path:

%s: %s", path.Index(i).Child("namespaces").String(),

strings.Join(sets.List(action["enforce"].Intersection(sets.New(nsList...))), ", "))

}

action["auditW"].Insert(patternList...)

} else if vfa.Action.Enforce() {

if action["audit"].HasAny(nsList...) {

return fmt.Errorf("conflicting namespaces found in path:

%s: %s", path.Index(i).Child("namespaces").String(),

strings.Join(sets.List(action["audit"].Intersection(sets.New(nsList...))), ", "))

}

action["enforceW"].Insert(patternList...)

}

action[strings.ToLower(string(vfa.Action))].Insert(nsList...)

At this point in the execution, the action map did dot have an action corresponding to
strings.ToLower(string(vfa.Action))which resulted in the line effectively being
nil.Insert(nsList...). The fix was to validate the vfa.Action further up in the function
body.

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=60759
https://github.com/kyverno/kyverno/pull/7874
https://github.com/kyverno/kyverno/blob/7647a1632dd6af71ff35d001edaff88e874a0708/pkg/validation/policy/validate.go#L1280
https://github.com/kyverno/kyverno/blob/7647a1632dd6af71ff35d001edaff88e874a0708/pkg/validation/policy/validate.go#L1280

Issue 3: Missing fallback results in a nil-dererence panic

OSS-Fuzz bug tracker: https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=62032

Mitigation: Fixed in https://github.com/kyverno/kyverno/pull/8271

ID: ADA-KYV-FUZZ-3

In this part of the PSS handler, getSpec could return nil, nil, nilwhich resulted in a
Go nil-dereference panic on the highlighted lines:

https://github.com/kyverno/kyverno/blob/34bfb57c084bc7364f9a7a0cbce3626ea67e090d/pkg/en
gine/handlers/validation/validate_pss.go#L26-L46

func (h validatePssHandler) Process(

ctx context.Context,

logger logr.Logger,

policyContext engineapi.PolicyContext,

resource unstructured.Unstructured,

rule kyvernov1.Rule,

_ engineapi.EngineContextLoader,

) (unstructured.Unstructured, []engineapi.RuleResponse) {

// Marshal pod metadata and spec

podSecurity := rule.Validation.PodSecurity

if resource.Object == nil {

resource = policyContext.OldResource()

}

podSpec, metadata, err := getSpec(resource)

if err != nil {

return resource, handlers.WithError(rule, engineapi.Validation, "Error

while getting new resource", err)

}

pod := &corev1.Pod{

Spec: *podSpec,

ObjectMeta: *metadata,

}

The reason was that
github.com/kyverno/kyverno/pkg/engine/handlers/validation.getSpec checked
the resource type but was missing a fallback in case it was not a DaemonSet, Deployment,
Job, StatefulSet, ReplicaSet, ReplicationController, CronJob or a Pod. The below code
snippet shows the fix highlighted with green:

https://github.com/kyverno/kyverno/blob/27566eb3fa45ee397e3e2b57af5938660146b4e0
/pkg/engine/handlers/validation/validate_pss.go#L69-L118

func getSpec(resource unstructured.Unstructured) (podSpec *corev1.PodSpec, metadata

*metav1.ObjectMeta, err error) {

kind := resource.GetKind()

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=62032
https://github.com/kyverno/kyverno/pull/8271#event-10286979541
https://github.com/kyverno/kyverno/blob/34bfb57c084bc7364f9a7a0cbce3626ea67e090d/pkg/engine/handlers/validation/validate_pss.go#L26-L46
https://github.com/kyverno/kyverno/blob/34bfb57c084bc7364f9a7a0cbce3626ea67e090d/pkg/engine/handlers/validation/validate_pss.go#L26-L46
https://github.com/kyverno/kyverno/blob/27566eb3fa45ee397e3e2b57af5938660146b4e0/pkg/engine/handlers/validation/validate_pss.go#L69-L118
https://github.com/kyverno/kyverno/blob/27566eb3fa45ee397e3e2b57af5938660146b4e0/pkg/engine/handlers/validation/validate_pss.go#L69-L118

if kind == "DaemonSet" || kind == "Deployment" || kind == "Job" || kind ==

"StatefulSet" || kind == "ReplicaSet" || kind == "ReplicationController" {

var deployment appsv1.Deployment

resourceBytes, err := resource.MarshalJSON()

if err != nil {

return nil, nil, err

}

err = json.Unmarshal(resourceBytes, &deployment)

if err != nil {

return nil, nil, err

}

podSpec = &deployment.Spec.Template.Spec

metadata = &deployment.Spec.Template.ObjectMeta

return podSpec, metadata, nil

} else if kind == "CronJob" {

var cronJob batchv1.CronJob

resourceBytes, err := resource.MarshalJSON()

if err != nil {

return nil, nil, err

}

err = json.Unmarshal(resourceBytes, &cronJob)

if err != nil {

return nil, nil, err

}

podSpec = &cronJob.Spec.JobTemplate.Spec.Template.Spec

metadata = &cronJob.Spec.JobTemplate.ObjectMeta

} else if kind == "Pod" {

var pod corev1.Pod

resourceBytes, err := resource.MarshalJSON()

if err != nil {

return nil, nil, err

}

err = json.Unmarshal(resourceBytes, &pod)

if err != nil {

return nil, nil, err

}

podSpec = &pod.Spec

metadata = &pod.ObjectMeta

return podSpec, metadata, nil

} else {

return nil, nil, fmt.Errorf("Could not find correct resource type")

}

if err != nil {

return nil, nil, err

}

return podSpec, metadata, err

}

