
Kyverno 2023 Security
Audit Report
In collaboration with the Kyverno project maintainers, The Linux Foundation and the
Open Source Technology Improvement Fund

Prepared by
Adam Korczynski, Ada Logics
David Korczynski, Ada Logics

Report version: 1.0

Published: 28th November 2023

This report is licensed under Creative Commons 4.0 (CC BY 4.0)

This page has intentionally been le� blank
Kyverno 2023 Security Audit Report

1 Ada Logics Ltd

Table of Contents

Executive Summary 4

Project Scope 6

Threat Model 7

Fuzzing 14

SLSA Review 16

Issues Found 18

Kyverno 2023 Security Audit Report

2 Ada Logics Ltd

Executive summary
In the fall of 2023, Ada Logics conducted a security audit of Kyverno in a coordinated
collaboration between Ada Logics, Kyverno, OSTIF and the CNCF. The CNCF funded the work.
The security audit was a holistic security audit with the following goals:

1. Assess and formalize a threat model for Kyverno, highlighting entrypoints, risks and at-risk
components.

2. Review the Kyverno codebase for security vulnerabilities of any severity.
3. Review Kyvernos fuzzing suite
4. Review Kyverno's supply-chain maturity against SLSA.

To formalize the threat model, Ada Logics relied on three sources of information: 1) Kyverno's
o�icial documentation, 2) the Kyverno source tree and 3) feedback from the Kyverno
maintainers. The manual review was performed against the threat model to allow the auditors
to consider trust levels and threat actors while reviewing the code.

The report contains all issues found during both the threat modelling and manual code audit
exercises. Five of these issues were exploitable by threat actors identified during the threat
modelling, and these issues were assigned CVEs which are listed in the table below. In addition,
a�er reviewing one of the vulnerabilities, the Kyverno team identified a similar issue in a 3rd-
party dependency, Cosign, which Ada Logics disclosed to Cosign and worked with the project
on a fix. This is also included below and is not referenced elsewhere in the report.

Issue CVE CVE
severitiy

Remote user can make Kyverno users consume incorrect
image

CVE-2023-
47630

High

Denial of service from malicious signature CVE-2023-
42816

Moderate

Denial of service from malicious index manifest 1 CVE-2023-
42815

Low

Denial of service from malicious index manifest 2 CVE-2023-
42814

Low

Denial of service from malicious manifest layer CVE-2023-
42813

Moderate

Possible endless data attack from attacker-controlled registry CVE-2023-
46737

Low

Ada Logics disclosed these findings responsibly to Kyverno through Kyverno's public GitHub
Security Advisory disclosure channels. The Kyverno security response team responded to the
disclosures with fixes in a timely manner before the audit was completed.

During the fuzzing goal, Ada Logics reviewed Kyverno's fuzzing suite and added two fuzzers that
target one attack surface identified during the threat modelling: Policy bypasses, i.e. where an
internal attacker attempts to submit a request that bypasses a policy deployed by the Kyverno
admin.

The SLSA review found that Kyverno complies at the highest level (SLSA Level 3). Kyverno builds
its releases on GitHub Actions and includes verifiable provenance with releases, which makes
Kyverno hardened against a series of well-known attack vectors in Kyverno's so�ware supply-
chain.

Kyverno 2023 Security Audit Report

3 Ada Logics Ltd

Strategic recommendations
Kyverno maintains high security standards. The project maintains a good suite of automated
testing with support of state-of-the-art SAST (static application security testing) and DAST
(dynamic application security testing) security tools in the CI.

Kyverno's SLSA compliance demonstrates excessive work on supply-chain security, and during
the audit, we learned that the Kyverno team works well with the community on mitigating and
patching disclosed security vulnerabilities.

Kyverno maintains a high level of security maturity, and moving forward, Kyverno should
maintain this level.

We recommend that Kyverno engages with maintainers and the community to continue the
work that Ada Logics has done to set up the Kyverno fuzz suite in Kyvernos fuzzing security
audit completed earlier in 2023, as well as the work Ada Logics did during this audit to improve
the fuzzing suite.

Kyvernos fuzzers run in a continuous manner, and the project can leverage the experience and
field knowledge of maintainers and the community to write fuzzers that call security-sensitive
APIs considered specific attack vectors. This should be considered ongoing work, which can be
done in regular sprints or as part of ongoing work.

In addition, we recommend that Kyverno encourages contributors to include fuzz tests with
code contributions and/or code changes. The CNCF-Fuzzing handbook is a great source of
reference for people wishing to get started with fuzzing the CNCF project landscape:
https://github.com/cncf/tag-security/blob/main/security-fuzzing-handbook/handbook-
fuzzing.pdf.

With regards to security hardening the Kyverno code case, we recommend validating all input
from remote data sources, including remote registries. Multiple vulnerabilities found in this
audit were from lack of input received a�er sending a request to a remote registry. If Kyverno
adds similar functionality or changes existing code parts, we recommend validating the
received data from calls to remote sources.

While Kubernetes tooling makes it easy to build dynamic admission controllers, security and
hardening of these critical components is o�en overlooked. The Kyverno project's work on
security and recommendations in this report can serve as a guide for implementors.

Kyverno 2023 Security Audit Report

4 Ada Logics Ltd

https://github.com/cncf/tag-security/blob/main/security-fuzzing-handbook/handbook-fuzzing.pdf
https://github.com/cncf/tag-security/blob/main/security-fuzzing-handbook/handbook-fuzzing.pdf

Project Scope
The following Ada Logics auditors carried out the audit and prepared the report.

Name Title Email

Adam Korczynski Security Engineer, Ada Logics Adam@adalogics.com

David Korczynski Security Researcher, Ada Logics David@adalogics.com

The following Kyverno team members were part of the audit.

Name Title Email

Jim Bugwadia maintainer jim@nirmata.com

Shuting Zhao maintainer shuting@nirmata.com

Charles-Edouard Brétéché maintainer charles.edouard@nirmata.com

Chip Zoller maintainer chipzoller@gmail.com

The following OSTIF members were part of the audit.

Name Title Email

Derek Zimmer Executive Director, OSTIF Derek@ostif.org

Amir Montazery Managing Director, OSTIF Amir@ostif.org

Kyverno 2023 Security Audit Report

5 Ada Logics Ltd

Threat model
Kyverno is a Kubernetes admission controller, which implements a policy engine that allows
cluster administrators and DevOps teams to granularly define policies that make admission
decisions on workloads in the cluster. Kyverno reads the resources from incoming requests and
either validates that the resource conforms to the policies that the cluster admin has deployed,
or Kyverno changes the resource to conform to the deployed policies. The former is called
validation and the latter is called mutation. Mutation and validation are concepts originating
from the Kubernetes admission controller design; Admission control in Kubernetes is divided
into two stages: Mutation runs in the first part and validation in the second.

Kubernetes admission controllers are hooks into the Kubernetes request lifecycle. They run
a�er Kubernetes has authenticated and authorized the request. The entire request lifecycle can
be split into six separate steps:

The lifecycle starts with the user making a request to the APIServer, which the API Handler
receives. Kubernetes then authenticates and authorizes the request, a�er which the
MutatingAdmissionWebhook invokes the mutating admission control webhook. If the request fails

at the mutating step, the API Server rejects the request, and the user receives an error. If the
request passes the mutating admission controller, the request proceeds to the schema
validation step, where the API Server validates that the resource conforms to the schema. If it
does, then the request proceeds to the admission validation step, which invokes the
ValidatingAdmissionWebhook . This is the second part of the admission control interface; Here, a

validating admission controller validates the incoming request and returns a binary response:
either "pass" or "fail". Also, at this stage, if the response is "fail", the request is rejected
immediately. If the request passes, then the request proceeds to etcd and has been approved
by the cluster.

Kyverno's policy engine allows users to create admission policies with granular requirements
for the resources in the incoming requests. At a high level, users can filter and evaluate fields
and values of a resource and make admission decisions from them. For example, users can
consider the number of containers that a Pod resource type includes, whether a path field
points to a specific location, or whether a field is true or false.

As such, Kyverno's interaction with the Kubernetes request lifecycle looks as follows:

Kyverno 2023 Security Audit Report

6 Ada Logics Ltd

Kyverno 2023 Security Audit Report

7 Ada Logics Ltd

The entry points into Kyverno are via the mutating and validating webhooks. The requests flow
through Kyverno's handler for either mutation or validation and into the Kyverno engine. The
engine is responsible for processing the request against the deployed policies in the cluster and
return a "pass" or "fail" response to the API Server. During the processing of requests against
the deployed policies, the engine can make two types of remote calls: 1) To an image registry to
fetch data about images, such as signatures attestations for verification and 2) to services of the
Kyverno admins choosing. The Kyverno engine makes admission decisions based on the data
returned from both types of remote services.

Kyverno 2023 Security Audit Report

8 Ada Logics Ltd

Kyverno Trust Boundaries
Kyverno has two trust boundaries:

1: Between the cluster user and the request authentication and authorization. At this boundary,
trust flows from low to high in the direction from the external user to the API Server. While this
is a trust boundary for Kyverno, it relies on Kubernetes properly authenticating and authorizing
the request; As such, Kyverno always receives authenticated and authorized requests via the
admission controller webhooks.

2: Between the Kyverno engine and the external data sources and image registries. At this
boundary, trust flows high to low in the direction from the engine to the remote data source
and low to high from the remote data source to the Kyverno engine.

The Kyverno admin is a fully trusted user, and attacks from or against this user do not fall within
Kyverno's threat model. These attacks can be policy confusion attacks where an attacker is able
to swap policies on the Kyverno admin's file system a�er the Kyverno admin verifies them but
before the Kyverno admin deploys them to the cluster. Kyverno fully trusts that the data coming
from the Kyverno admin is correct and intended. Attacks on the Kyverno admin can result in
compromise of the cluster; For example, if an attacker is able to steal the admin's credentials,
they may be able to deploy policies of their choosing and, as a result, also deploy resources of
their choosing. However, Kyverno cannot improve its security design as it follows the
Kubernetes standards for deploying policies to Kyverno.

Kyverno 2023 Security Audit Report

9 Ada Logics Ltd

Kyverno Attack Surface
The trust boundaries are also Kyverno's attack surface. From the API server, the data with which
attackers can attack Kyverno are by way of Kubernetes object requests.

To attack Kyverno from the remote registry, an attacker must either control a registry that
Kyverno fetches data from or intercept requests with a man-in-the-middle position. In either
case, the registry is untrusted from the perspective of Kyverno; Kyverno is not in control of the
security posture of the remote registry, and an attacker could obtain the necessary position by
compromising the registry and position themselves between Kyverno and the registry. With
such a position, the attacker could return malicious responses to Kyvernos requests to the
registry to attempt a myriad of attacks, including policy bypass attacks or image confusion
attacks, where an attacker would either consume a malicious image or make Kyverno consume
malicious images in other users' workloads.

Kyverno's calls to remote data sources, including remote registries, are particularly interesting
since Kyverno makes these calls a�er several steps of authentication and authorization have
occurred in the request lifecycle. As such, the attacker does not require any privileges in the
cluster to attack Kyverno when Kyverno makes requests to remote data sources. If an attacker
can control responses to Kyverno from remote data sources, they can potentially return any
arbitrary data to Kyverno. This combination exposes a supply-chain risk to Kyverno at runtime;
An attacker can compromise an external service and attempt to escalate their position onto
Kyverno, when Kyverno requests the service. Supply-chain security is an emerging area of
interest with ongoing research to identify new attack vectors in the wild and proactively before
malicious threat actors find these attack vectors. Supply-chain security covers a wide range of
attack surface spanning from the so�ware development life cycle (SDLC) to attacks at runtime.
In this context, we are considering the runtime-specific vulnerability classes.
TheUpdateFrameworks (TUF) threat model (https://theupdateframework.io/security/)
identifies a series of such attacks. Kyverno inherits several of these attacks from its 3rd-party
dependencies and in its engine. Below, we enumerate the supply-chain-specific attack vectors
which also a�ect Kyverno:

Rollback attacks: An attacker tricks the victim system into downloading or install an older
version of an artifact than is currently available. The victim system does not recognize that a
newer version is available and, therefore installs the old version. In this scenario, the older
version contains vulnerabilities, whereas the newer version does not. In a classic rollback
attack, the attacker would need to exploit these vulnerabilities to further advance their
position. In Kyverno's case, an attacker could release a newer image by tag or digest - and trick
Kyverno into fetching and consuming it. As such, this has a variation compared to a classic
rollback attack, since the attack could trick Kyverno into consuming an image that contains the
attackers reward as well, for example a crypto miner.

Arbitrary so�ware installation attacks: Similar to rollback attacks, but instead of installing a
di�erent version of a given artifact, the attacker manages to install an entirely di�erent artifact.
The attack vector in Kyverno's case is similar to the Rollback attack.

Endless data attacks: An attacker responds to a request with an endless data stream, thereby
either exhausting memory or triggering a practical infinite loop. This is an attack vector to
Kyverno at any point where Kyverno sends a request to a remote data source or registry. In a
situation where an attacker has compromised Kyverno's supply chain - i.e. the remote registry
or manages to intercept requests as a man-in-the-middle (MITM) type of attack - they can
attempt to cause denial-of-service with an endless stream of data.

Wrong so�ware installation: Similar to Rollback attacks and Arbitrary So�ware Installation
attacks, but in this case, the attack delivers a trusted file which is di�erent than the file the
victim intended to consume.

Kyverno 2023 Security Audit Report

10 Ada Logics Ltd

Attackers can utilize these supply-chain-specific attack vectors to carry out two high-level types
of attacks: 1) Policy bypasses and 2) General attempts of compromise. For policy bypasses, an
attacker is able to escalate privileges if they are able to carry out an action that the Kyverno
admin has prevented by way of a Kyverno policy. For general attempts of compromise, an
attacker can escalate privileges by compromising the confidentiality, integrity or availability for
cases that should not be possible even if there is not a policy for it. The list of such cases is long,
but as an example: Any non-cluster admin should not be able to achieve cluster admin
privileges without the cluster admin granting these. Or: no user should be able to trick Kyverno
into running crypto miners unless the Kyverno admin specifically allows this. Or: no user should
be able to steal credentials of other users in the cluster.

Kyverno 2023 Security Audit Report

11 Ada Logics Ltd

Kyverno Threat Actors
A threat actor is an individual or group that intentionally attempts to exploit vulnerabilities,
deploys malicious code, or compromise or disrupt a Kyverno deployment, o�en for financial
gain, espionage, or sabotage. A threat actor is the personification of a possible attacker of
security issues. Each threat actor has a level of trust tied to them, and matching one or several
threat actors with Kyvernos threat model helps identify the high-level security risk. We identify
the following threat actors for Kyverno. A threat actor can assume multiple profiles from the
table below; for example, a fully untrusted user can also be a contributor to a 3rd-party library
used by Kyverno.

To score the level of trust, Ada Logics uses the following levels:

None : The Kyverno admin has not assigned any level of privilege to the user. The Kyverno
admin does not know the identity of the actor.
Low : The Kyverno admin has assigned some privileges to the actor but has not assigned

other privileges.
High : At this level of trust, the actor has some privileges to modify the Kyverno

deployment but might not have full privileges to modify everything.
Full : At this level of trust, there is no doubt that the user can do anything with the Kyverno

deployment, including delete the whole cluster. An actor at this level of privileges cannot
escalate privileges, and features in the code that allow actors at this level of trust to
compromise the deployment are not security issues.

Threat Actor Description Level of
trust

Remote users Users that have not been granted any privileges. None

Cluster Users
Users that can send requests to the API Server that will
authenticate and authorize. The users' requests will reach
Kyverno

Low

Contributors to Kyverno Users that make code-contributions to Kyverno. None

Maintainers of Kyverno Users that have maintainer privileges at Kyvernos Github
repository

High

Contributors to 3rd-party
dependencies

Users that make code-contributions to libraries in
Kyvernos dependency tree. This includes maintainers of
the third-party libraries.

None

Container image vendors
- private registries

A person or organization developing, maintaining and/or
distributing container images at a private registry

High

Container image vendors
- public registries

A person or organization developing, maintaining and/or
distributing container images at a public registry

High

Kyverno admin An admin with privileges to configure the Kyverno
deployment and/or deploy policies to the cluster

Full

Kyverno 2023 Security Audit Report

12 Ada Logics Ltd

Fuzzing
As part of the audit, Ada Logics made new additionts to Kyvernos fuzzing suite. Prior to this
security audit, Kyverno had integrated into OSS-Fuzz meaning that future improvements to
fuzzing Kyverno could be added to its continuous fuzzing set up. During this audit, Ada Logics
wrote new fuzzers that we added to Kyvernos OSS-Fuzz integration. The fuzzers ran during the
audit and will continue to run a�er the audit has completed. Kyverno maintains its fuzz tests
and OSS-Fuzz integration in its own source tree, and Ada Logics added the fuzzers to the
package directories that they test to follow that design.

From a high level, Ada Logics made the following improvements:

Wrote new fuzzer testing for validation bypasses
We added a fuzzer to test for policy enforcement against a Pod resource. The fuzzer has eleven
admission policies that the fuzzer tries to bypass. The fuzzer will select one of the eleven
policies to test in each iteration. It will then create a random Pod resource and make its own
assertion of whether the Pod should fail validation. Finally, the fuzzer invokes Kyvernos
Validate and compares the outcome with its own assertion. The outcome should be the same

as its own assertion.

The eleven policies that the fuzzer tests for are shown below. The Policy column contains the
type of policy. All policies can be found in
https://github.com/kyverno/kyverno/blob/main/pkg/enging/fuzz_test.go.

Name Policy

latest-image-tag-policy
Checks all containers in the Pod. If a container has image
specified, and it is referenced with latest , then the container
must set imagePullPolicy to Always .

equality-hostpath-policy Blocks Pods with hostPath set to /var/lib

security-context-policy Blocks Pods that don't set runAsNonRoot to true

container-name-policy Blocks Pods with containers that are not called nginx

pod-existence-policy Blocks Pods if not at least one container is called nginx

host-path-cannot-exist-
policy

Blocks Pods specify hostPath in its Volumes

namespace-cannot-be-
empty-or-default-policy

Blocks Pods that have not specified a Namespace, or if the
Namespace is default

hostnetwork-and-port-not-
allowed-policy

Blocks Pods that set hostNetwork to true , or if any of its
containers specify hostPort

supplemental-groups-
should-be-higher-than-zero-
policy

Blocks Pods if supplementalGroups is 0

supplemental-groups-
should-be-between

Blocks Pods if supplementalGroups is 0 or higher than 100001

should-have-more-memory-
than-first-container

Blocks the Pod if the first container sets its request memory
limit lower than any of the other containers, and if any
containers memory limit is not 2048Mi

Wrote new fuzzer testing for PSS bypasses

Kyverno 2023 Security Audit Report

13 Ada Logics Ltd

As part of the audit, Ada Logics added a fuzzer for testing Kyvernos PSS enforcement. The fuzzer
takes the same approach as the fuzzer testing for validation bypasses: The fuzzer has a set of
policies and uses the test case to generate pseudo-random objects that attempt to break
Kyvernos PSS verification. Kyvernos Pod Security Admission has had cases of bypasses in the
past (CVE-2023-33191), and fuzzing can help test for edge cases that could bypass PSS.

Wrote new fuzzer for Kyvernos use of go-jmespath
Kyverno maintains its own fork of go-jmespath and uses this across its code. Ada Logics wrote a
fuzzer for the github.com/kyverno/kyverno/pkg/engine/context.(*context).HasChanged() which
calls into Kyvernos go-jmespath library which performs complex processing over a string.
Targetting an API that Kyverno invokes deep in the call tree allows for a level of over-
approximation; They are likely to trigger issues with data that Kyverno will sanitize further up in
the execution tree. At the same time, if code changes one place and removes sanitization that
code further down the tree depends on, bugs could become available to untrusted input, and
the code may not have su�icient e2e testing that catches this. As such, the fuzzers provide value
in finding bugs that may not be cause for concern at this point but may be in the future.

Kyverno 2023 Security Audit Report

14 Ada Logics Ltd

SLSA review
ADA Logics carried out a SLSA review of Kyvenro. SLSA (https://github.com/slsa.dev) is a
framework for assessing the security practices of a given so�ware project with a focus on
mitigating supply-chain risk. SLSA emphasises tamper resistance of artifacts as well as
ephemerality of the build and release cycle.

SLSA mitigates a series of attack vectors in the so�ware development life cycle (SDLC), all of
which have seen real-world examples of successful attacks against open-source and proprietary
so�ware.

Below, we see a diagram made by the SLSA illustrating the attack surface of the SDLC.

Each of the red markers demonstrates di�erent areas of possible compromise that could allow
attackers to tamper with the artifact that the consumer invokes at the end of the SDLC.

SLSA splits its assessment criteria into 4, increasingly demanding levels. At a high level, the
higher the level of compliance, the higher tamper-resistance the project ensures its consumers.

Kyverno builds its releases via the o�icial SLSA-Github-Generator project:
https://github.com/slsa-framework/slsa-github-generator. This project implements a reusable
workflow which builds the artifacts and creates provenance for the artifacts. Users of the SLSA-
Github-Generator reusable workflows can choose to release binaries and provenance via the
reusable workflow. Below we see a snippet of how Kyverno uses the reusable workflow to
generate provenance for the kyverno-init artifact:

https://github.com/kyverno/kyverno/blob/b391694e67dc0e63040d16b6002fc39e3faf40f9/.github/workflows/release.yaml#L15
1-L164

151 generate-kyverno-init-provenance:
152 needs: release-images
153 permissions:
154 id-token: write # To sign the provenance.
155 packages: write # To upload assets to release.
156 actions: read # To read the workflow path.
157 # NOTE: The container generator workflow is not officially released as GA.
158 uses: slsa-framework/slsa-github-

generator/.github/workflows/generator_container_slsa3.yml@v1.9.0
159 with:
160 image: ghcr.io/${{ github.repository_owner }}/kyvernopre
161 digest: "${{ needs.release-images.outputs.kyverno-init-digest }}"
162 registry-username: ${{ github.actor }}
163 secrets:
164 registry-password: ${{ secrets.GITHUB_TOKEN }}

Kyverno uses v1.9.0, which is the latest release.

Kyverno 2023 Security Audit Report

15 Ada Logics Ltd

https://slsa.dev/

This usage represents the optimal way for building and release, according to the SLSA
framework, and Kyverno mitigates the risks identified by SLSA to the highest degree. As such,
Kyverno complies with SLSA level 3, which is the highest level.

Kyverno 2023 Security Audit Report

16 Ada Logics Ltd

Issues found
Ada Logics found 10 issues during the audit. The list includes all issues found by way of manual
auditing and fuzzing. Ada Logics uses a scoring system that considers impact and ease of
exploitation. This is di�erent from the CVSS scoring system, and there may be discrepancies
between the severity assigned by Ada Logics and the severity resulting from a CVSS calculation.

Title Status Severity

1 Denial of service from malicious index manifest 1 Fixed Low

2 Denial of service from malicious index manifest 2 Fixed Low

3 Denial of service from malicious manifest layer Fixed Moderate

4 Denial of service from malicious signature Fixed Moderate

5 Index out of range panic in third-party dependency Fixed Low

6 Missing closing of HTTP response body Fixed Low

7 Missing size check when making call to remote services. Fixed Low

8 Possible endless data attack from attacker-controlled registry Fixed Low

9 Remote user can make Kyverno users consume incorrect image Fixed High

10 Type Confusion in Jmespath Execution Fixed Low

Kyverno 2023 Security Audit Report

17 Ada Logics Ltd

Denial of service from malicious index manifest 1

Severity: Low

Status: fixed

Id: ADA-KYV-2023BHFA

Component: Notary Verifier

Kyverno's Notary client implementation is susceptible to a Denial-of-Service vulnerability. The
vulnerable method is ListSignatures , which fetches referrers on an image descriptor from a
remote registry, gets the index manifest of the referrers, adds the descriptors of
ArtifactTypeNotation and finally invokes fn() on the descriptors. An attacker who controls the

remote registry can return malicious referrers containing a very high amount of manifests that
would cause the loop to continue for an amount of time controlled by the attacker. Below, on
line 43, the attacker can control the malicious referrers, and the loop on lines 54-57 continues
for an amount of time controlled by an attacker.

https://github.com/kyverno/kyverno/blob/9361100f1761eec0e3cad6d389dd06d802b382ef/pkg/notary/repository.go#L42-L61

42 func (c *repositoryClient) ListSignatures(ctx context.Context, desc
ocispec.Descriptor, fn func(signatureManifests []ocispec.Descriptor) error) error {

43 referrers, err :=
remote.Referrers(c.ref.Context().Digest(desc.Digest.String()), c.remoteOpts...)

44 if err != nil {
45 return err
46 }
47
48 referrersDescs, err := referrers.IndexManifest()
49 if err != nil {
50 return err
51 }
52
53 descList := []ocispec.Descriptor{}
54 for _, d := range referrersDescs.Manifests {
55 if d.ArtifactType == notationregistry.ArtifactTypeNotation {
56 descList = append(descList, v1ToOciSpecDescriptor(d))
57 }
58 }
59
60 return fn(descList)
61 }

An attacker can exploit this in di�erent ways; in every attack scenario, they would need to
control the response from the registry to Kyverno, when Kyverno sends a request to a remote
registry. From the perspective of Kyverno's threat model, the registry is considered untrusted
since it is not always controlled by the Kyverno user. There are several ways the attacker could
control the registry. One is to compromise the server on which the registry runs. At this level,
the attacker would compromise the machine on which the registry is running, which could be
enabled by misconfiguration or lack of patching security vulnerabilities. The registry could also
be deployed without proper and best-practices configuration. In this case, the attacker would
look for misconfiguration in the way the registry was deployment, i.e. weak authorization,
hidden admin pages, HTTP tra�ic where it should be HTTPS and other mistakes. An attacker
could also seek to compromise the registry at the code level and add vulnerabilities to the code.
If the registry is open-source, the attacker can make malicious pull requests containing code
that obfuscates vulnerabilities. If the code for the registry is closed-source, the attacker can
attempt to steal developer credentials and impersonate an employee to make pull requests to
the registry. Highlighting these di�erent levels of compromise illustrates the attack vector of the
remote registry. Kyverno has no control over the configuration of the server, the registry or the
security practices surrounding developer credentials, and Kyverno must guard itself against
such insecurities from the registry.

Kyverno 2023 Security Audit Report

18 Ada Logics Ltd

In the event that an attacker is able to control the response to Kyverno from the registry, they
will return referrers with a high number of manifests, which causes Kyverno to go into a loop
without completing validation. This could prevent Kyverno from validating requests made by
any users on the cluster, and users on the cluster would not be able to deploy new resources to
the cluster. The outcome of this attack would be to prevent other users from using the cluster
for legitimate purposes.

A variation on this attack is if the attacker has permissions to make requests to the Kubernetes
APIServer; the attacker can release an image containing a high number of referrer manifests
and then make an admission request with a reference to that image. As a result, the attacker
could trigger the vulnerability and deny Kyverno from validating requests from other users.

This vulnerability requires interaction from Kyverno for an attacker to exploit it. It is not
possible to send a request to Kyverno with the malicious payload; the vulnerability can only be
exploited with a malicious response once Kyverno makes a request to the registry.

Kyverno 2023 Security Audit Report

19 Ada Logics Ltd

Denial of service from malicious index manifest 2

Severity: Low

Status: fixed

Id: ADA-KYV-2023IBQE

Component: Notary Verifier

Kyverno's Notary client implementation is susceptible to a Denial-of-Service vulnerability. The
vulnerable method is FetchAttestations , which fetches referrers from a remote registry, gets the
index manifest of the referrers and loops through the manifests. An attacker who controls the
remote registry can return malicious referrers containing a very high amount of manifests that
would cause the loop to continue for an amount of time controlled by the attacker. Below, on
line 149, the attacker would return the malicious referrers, and the loop on line 169-202 would
continue for an amount of time controlled by the attacker, depending on the amount of
manifests.

https://github.com/kyverno/kyverno/blob/9361100f1761eec0e3cad6d389dd06d802b382ef/pkg/notary/notary.go#L130-L205

130 func (v *notaryVerifier) FetchAttestations(ctx context.Context, opts images.Options)
(*images.Response, error) {

131 v.log.V(2).Info("fetching attestations", "reference", opts.ImageRef, "opts",
opts)

132
133 ref, err := name.ParseReference(opts.ImageRef)
134 if err != nil {
135 return nil, errors.Wrapf(err, "failed to parse image reference: %s",

opts.ImageRef)
136 }
137 authenticator, err := getAuthenticator(ctx, opts.ImageRef, opts.Client)
138 if err != nil {
139 return nil, errors.Wrapf(err, "failed to parse authenticator: %s",

opts.ImageRef)
140 }
141
142 remoteOpts, err := getRemoteOpts(*authenticator)
143 if err != nil {
144 return nil, err
145 }
146
147 v.log.V(4).Info("client setup done", "repo", ref)
148
149 repoDesc, err := gcrremote.Head(ref, remoteOpts...)
150 if err != nil {
151 return nil, err
152 }
153 v.log.V(4).Info("fetched repository", "repoDesc", repoDesc)
154
155 referrers, err :=

gcrremote.Referrers(ref.Context().Digest(repoDesc.Digest.String()), remoteOpts...)
156 if err != nil {
157 return nil, err
158 }
159
160 referrersDescs, err := referrers.IndexManifest()
161 if err != nil {
162 return nil, err
163 }
164
165 v.log.V(4).Info("fetched referrers", "referrers", referrersDescs)
166
167 var statements []map[string]interface{}
168
169 for _, referrer := range referrersDescs.Manifests {
170 match, _, err := matchArtifactType(referrer, opts.Type)
171 if err != nil {
172 return nil, err
173 }
174
175 if !match {
176 v.log.V(6).Info("type doesn't match, continue", "expected",

opts.Type, "received", referrer.ArtifactType)

Kyverno 2023 Security Audit Report

20 Ada Logics Ltd

177 continue
178 }
179
180 targetDesc, err := verifyAttestators(ctx, v, ref, opts, referrer)
181 if err != nil {
182 msg := err.Error()
183 v.log.V(4).Info(msg, "failed to verify referrer %s",

targetDesc.Digest.String())
184 return nil, err
185 }
186
187 v.log.V(4).Info("extracting statements", "desc", referrer, "repo",

ref)
188 statements, err = extractStatements(ctx, ref, referrer, remoteOpts)
189 if err != nil {
190 msg := err.Error()
191 v.log.V(4).Info("failed to extract statements %s", "err",

msg)
192 return nil, err
193 }
194
195 v.log.V(4).Info("verified attestators", "digest",

targetDesc.Digest.String())
196
197 if len(statements) == 0 {
198 return nil, fmt.Errorf("failed to fetch attestations")
199 }
200 v.log.V(6).Info("sending response")
201 return &images.Response{Digest: repoDesc.Digest.String(),

Statements: statements}, nil
202 }
203
204 return nil, fmt.Errorf("failed to fetch attestations %s", err)
205 }

An attacker can exploit this in di�erent ways; in every attack scenario, they would need to
control the response from the registry to Kyverno when Kyverno makes a request to a remote
registry. From the perspective of Kyverno's threat model, the registry is considered untrusted
since it is not always controlled by the Kyverno user. There are several ways the attacker could
control the registry. One is to compromise the server on which the registry runs. At this level,
the attacker would compromise the machine on which the registry is running, which could be
enabled by misconfiguration or lack of patching security vulnerabilities. The registry could also
be deployed without proper and best-practices configuration. In this case, the attacker would
look for misconfiguration in the deployment of the registry, i.e. weak authorization, hidden
admin pages, HTTP tra�ic where it should be HTTPS and other mistakes. An attacker could also
seek to compromise the registry at the code level and add vulnerabilities to the code. If the
registry is open-source, the attacker can make malicious pull requests containing code that
obfuscates vulnerabilities. If the code for the registry is closed-source, the attacker can attempt
to steal developer credentials and impersonate an employee to make pull requests to the
registry. Highlighting these di�erent levels of compromise illustrates the attack vector of the
remote registry. Kyverno has no control over the configuration of the server, the registry or the
security practices surrounding developer credentials, and Kyverno must guard itself against
such insecurities from the registry.

In the event that an attacker is able to control the response to Kyverno from the registry, they
will return referrers with a high number of manifests, which cause Kyverno to go into a loop
without completing validation. This could prevent Kyverno from validating requests made by
any users on the cluster, and users on the cluster would not be able to deploy new resources to
the cluster. The outcome of this attack would be to prevent other users from using the cluster
for legitimate purposes.

A variation on this attack is if the attacker has permissions to make requests to the Kubernetes
APIServer; the attacker can release an image containing a high number of referrer manifests
and then make an admission request with a reference to that image. As a result, the attacker
could trigger the vulnerability and deny Kyverno from validating requests from other users.

Kyverno 2023 Security Audit Report

21 Ada Logics Ltd

This vulnerability requires interaction from Kyverno for an attacker to exploit it. It is not
possible to send a request to Kyverno with the malicious payload; the vulnerability can only be
exploited with a malicious response once Kyverno makes a request to the registry.

Advisory details
GHSA: GHSA-9g37-h7p2-2c6r CVE: CVE-2023-42814

Kyverno 2023 Security Audit Report

22 Ada Logics Ltd

https://github.com/kyverno/kyverno/security/advisories/GHSA-9g37-h7p2-2c6r

Denial of service from malicious manifest layer

Severity: Moderate

Status: fixed

Id: ADA-KYV-2023NADD

Component: Notary Verifier

Kyvernos Notary client implementation is susceptible to a Denial-of-Service vulnerability. The
issue exists in extractStatement API, which fetches a signature layer from a remote registry and
reads it entirely into memory. If an attacker has control over the remote registry and can return
a descriptor that has a manifest that has a layer that has a very large predicate, they can crash
Kyverno by exhausting memory of the machine when Kyverno reads the memory, resulting in
denial of service for other users. The attacker will return a malicious descriptor on line 290
below, and on line 326, Kyverno reads the predicate entirely into memory:

https://github.com/kyverno/kyverno/blob/9361100f1761eec0e3cad6d389dd06d802b382ef/pkg/notary/notary.go#L283-L341

283 func extractStatement(ctx context.Context, repoRef name.Reference, desc
v1.Descriptor, remoteOpts []gcrremote.Option) (map[string]interface{}, error) {

284 refStr := repoRef.Context().RegistryStr() + "/" +
repoRef.Context().RepositoryStr() + "@" + desc.Digest.String()

285 ref, err := name.ParseReference(refStr)
286 if err != nil {
287 return nil, errors.Wrapf(err, "failed to parse image reference: %s",

refStr)
288 }
289
290 remoteDesc, err := gcrremote.Get(ref, remoteOpts...)
291 if err != nil {
292 return nil, fmt.Errorf("error in fetching manifest: %w", err)
293 }
294 manifestBytes, err := remoteDesc.RawManifest()
295 if err != nil {
296 return nil, fmt.Errorf("error in fetching statement: %w", err)
297 }
298 var manifest ocispec.Manifest
299 if err := json.Unmarshal(manifestBytes, &manifest); err != nil {
300 return nil, err
301 }
302
303 if len(manifest.Layers) == 0 {
304 return nil, fmt.Errorf("no predicate found: %+v", manifest)
305 }
306 if len(manifest.Layers) > 1 {
307 return nil, fmt.Errorf("multiple layers in predicate not supported:

%+v", manifest)
308 }
309 predicateDesc := manifest.Layers[0]
310
311 layer, err :=

gcrremote.Layer(ref.Context().Digest(predicateDesc.Digest.String()), remoteOpts...)
312 if err != nil {
313 return nil, err
314 }
315 ioPredicate, err := layer.Uncompressed()
316 if err != nil {
317 return nil, err
318 }
319 predicateBytes := new(bytes.Buffer)
320 _, err = predicateBytes.ReadFrom(ioPredicate)
321 if err != nil {
322 return nil, err
323 }
324
325 predicate := make(map[string]interface{})
326 if err := json.Unmarshal(predicateBytes.Bytes(), &predicate); err != nil {
327 return nil, err
328 }
329 data := make(map[string]interface{})
330 if err := json.Unmarshal(manifestBytes, &data); err != nil {
331 return nil, err

Kyverno 2023 Security Audit Report

23 Ada Logics Ltd

332 }
333
334 if data["type"] == nil {
335 data["type"] = desc.ArtifactType
336 }
337 if data["predicate"] == nil {
338 data["predicate"] = predicate
339 }
340 return data, nil
341 }

The vulnerability exists in Kyverno's Notary verifier, which has a method - FetchAttestations -
that downloads a predicate to verify an image against. Kyverno uses the Notary verifier as part
of the Kyverno imageVerifier. The Kyverno imageVerifier first verifies the attestors and then the
attestions of an image. When the imageVerifier proceeds to verify the attestations, it downloads
an attestation for each entry of the attestors. It is the job of the Kyverno Notary verifier to
download the attestations; specifically, the FetchAttestations method of the Notary verifier
handles the downloading. FetchAttestations first downloads a list of manifest digests called
"Referrers". For each manifest digest, the Kyverno Notary verifier verifies the digest against the
attestators and then downloads the manifest from a remote registry. The downloaded manifest
should have a single layer, which is the predicate and attestation that Kyverno will verify against
the image in the requested workload in the cluster. The predicate layer is compressed, and
when Kyverno decompresses it, it reads in entirely into memory without checking for - or
enforcing an upper limit to the size of the layer. As such, if the layer is su�iciently large, it could
drain memory of the host machine and cause a resource-exhaustion denial-of-service of
Kyverno.

To launch this attack, an attacker needs to first be in a position that allows them to control the
response from the registry.

Advisory Details
GHSA: GHSA-wc3x-5rfv-hh5v CVE: CVE-2023-42813

Kyverno 2023 Security Audit Report

24 Ada Logics Ltd

https://github.com/kyverno/kyverno/security/advisories/GHSA-wc3x-5rfv-hh5v

Denial of service from malicious signature

Severity: Moderate

Status: fixed

Id: ADA-KYV-2023MKDS

Component: Notary Verifier

The Kyverno Notary verifier is susceptible to a Denial-of-Service (DoS) attack from a malicious
signature.

The FetchSignatureBlob method fetches a signature layer from a remote registry and reads it
entirely into memory. If an attacker has control over the remote registry and can return a
descriptor that has a manifest that has a very large signatureBlobLayer, they can crash Kyverno
by exhausting memory of the machine when Kyverno reads the memory, resulting in denial of
service for other users. The attacker will return a malicious descriptor on line 69 below, and on
line 104, Kyverno reads the layer entirely into memory:

https://github.com/kyverno/kyverno/blob/9361100f1761eec0e3cad6d389dd06d802b382ef/pkg/notary/repository.go#L63-L105

63 func (c *repositoryClient) FetchSignatureBlob(ctx context.Context, desc
ocispec.Descriptor) ([]byte, ocispec.Descriptor, error) {

64 manifestRef, err := name.ParseReference(c.getReferenceFromDescriptor(desc))
65 if err != nil {
66 return nil, ocispec.Descriptor{}, err
67 }
68
69 remoteDesc, err := remote.Get(manifestRef, c.remoteOpts...)
70 if err != nil {
71 return nil, ocispec.Descriptor{}, err
72 }
73 manifestBytes, err := remoteDesc.RawManifest()
74 if err != nil {
75 return nil, ocispec.Descriptor{}, err
76 }
77
78 var manifest ocispec.Manifest
79 if err := json.Unmarshal(manifestBytes, &manifest); err != nil {
80 return nil, ocispec.Descriptor{}, err
81 }
82 manifestDesc := manifest.Layers[0]
83
84 signatureBlobRef, err :=

name.ParseReference(c.getReferenceFromDescriptor(manifestDesc))
85 if err != nil {
86 return nil, ocispec.Descriptor{}, err
87 }
88
89 signatureBlobLayer, err :=

remote.Layer(signatureBlobRef.Context().Digest(signatureBlobRef.Identifier()),
c.remoteOpts...)

90 if err != nil {
91 return nil, ocispec.Descriptor{}, err
92 }
93
94 io, err := signatureBlobLayer.Uncompressed()
95 if err != nil {
96 return nil, ocispec.Descriptor{}, err
97 }
98 SigBlobBuf := new(bytes.Buffer)
99
100 _, err = SigBlobBuf.ReadFrom(io)
101 if err != nil {
102 return nil, ocispec.Descriptor{}, err
103 }
104 return SigBlobBuf.Bytes(), manifestDesc, nil
105 }

Advisory

Kyverno 2023 Security Audit Report

25 Ada Logics Ltd

GHSA: GHSA-4mp4-46gq-hv3r CVE: CVE-2023-42816
Kyverno 2023 Security Audit Report

26 Ada Logics Ltd

https://github.com/kyverno/kyverno/security/advisories/GHSA-4mp4-46gq-hv3r

Index out of range panic in third-party dependency

Severity: Low

Status: fixed

Id: ADA-KYV-2023ASDV

Component: go-jmespath

One of the fuzzers written during this security audit detected an index-out-of-range panic in a
third-party dependency to Kyverno: go-jmespath.

The panic was found by fuzzing Kyverno and not the third-party dependency directly, and as
such, it was triggerable through Kyverno. That being said, the fuzzer over-approximates its
input test cases, and the issue was unlikely to be triggerable in a production deployment of
Kyverno.

The crash was found by OSS-Fuzz, a�er Ada Logics added the fuzzer to Kyverno's continuous
fuzzing integration. Below, we include the stack trace of the crash produced by OSS-Fuzz:

 panic: runtime error: index out of range [2] with length 2 [recovered]
 panic: runtime error: index out of range [2] with length 2
goroutine 17 [running, locked to thread]:
main.catchPanics()
 ./main.1065168555.go:49 +0x27c
panic({0x4311000?, 0x10c000b03440?})
 runtime/panic.go:914 +0x21f
github.com/kyverno/go-jmespath.(*Lexer).consumeUnquotedIdentifier(0x10c000bf9020)
 github.com/kyverno/go-jmespath@v0.4.1-0.20230705123211-d067dc3d6613/lexer.go:389 +0x237
github.com/kyverno/go-jmespath.(*Lexer).tokenize(0x10c000e0d020, {0x10c000bb058c?,
0x57c411?})
 github.com/kyverno/go-jmespath@v0.4.1-0.20230705123211-d067dc3d6613/lexer.go:153 +0x125
github.com/kyverno/go-jmespath.(*Parser).Parse(0x10c000e0d0a0, {0x10c000bb058c?, 0x0?})
 github.com/kyverno/go-jmespath@v0.4.1-0.20230705123211-d067dc3d6613/parser.go:129 +0xc6
github.com/kyverno/go-jmespath.Compile({0x10c000bb058c?, 0x0?})
 github.com/kyverno/go-jmespath@v0.4.1-0.20230705123211-d067dc3d6613/api.go:16 +0x65
github.com/kyverno/kyverno/pkg/engine/jmespath.newJMESPath({0x44fcb00, 0x59884e0},
{0x10c000bb058c?, 0x59884e0?})
 github.com/kyverno/kyverno/pkg/engine/jmespath/new.go:9 +0x5a
github.com/kyverno/kyverno/pkg/engine/jmespath.implementation.Query(...)
 github.com/kyverno/kyverno/pkg/engine/jmespath/interface.go:25

Kyverno 2023 Security Audit Report

27 Ada Logics Ltd

Missing closing of HTTP response body

Severity: Low

Status: fixed

Id: ADA-KYV-2023QKNE

Component: apiCall Package

Kyvernos apiCall package allows users to make calls to remote services to fetch data and use
it to make admission decisions. When apiCall makes a request to a remote service, it checks
the status code and proceeds into this branch, if the status is not 200 :

https://github.com/kyverno/kyverno/blob/4046315dac616d2b�6dab54a123d8aec79e558a/pkg/engine/apicall/apiCall.go#L131
-L138

131 if resp.StatusCode < 200 || resp.StatusCode >= 300 {
132 b, err := io.ReadAll(resp.Body)
133 if err == nil {
134 return nil, fmt.Errorf("HTTP %s: %s", resp.Status,

string(b))
135 }
136
137 return nil, fmt.Errorf("HTTP %s", resp.Status)
138 }

In this branch, Kyverno is missing a call to close the response body. According to the Golang
net/http documentationhttps://pkg.go.dev/net/http, users should close the body if the request

succeeds:

Kyverno 2023 Security Audit Report

28 Ada Logics Ltd

https://pkg.go.dev/net/http

Missing size check when making call to remote services.

Severity: Low

Status: fixed

Id: ADA-KYV-2023AKLS

Component: apiCall Package

Kyvernos apiCall package allows users to make calls to remote services to fetch data and use
it to make admission decisions. When apiCall makes a request to a remote service, it reads the
response body entirely into memory. If an attacker is able to return a large response to Kyverno
or the user misconfigures their remote service to return a response with a large body, Kyverno
could exhaust memory of the machine and crash. The result of this would be a denial of service
of Kyverno for other users of the cluster.

On the below lines, Kyverno reads the response entirely into memory on lines 132 and 141:

https://github.com/kyverno/kyverno/blob/4046315dac616d2b�6dab54a123d8aec79e558a/pkg/engine/apicall/apiCall.go#L111
-L148

111 func (a *apiCall) executeServiceCall(ctx context.Context, apiCall
*kyvernov1.APICall) ([]byte, error) {

112 if apiCall.Service == nil {
113 return nil, fmt.Errorf("missing service for APICall %s",

a.entry.Name)
114 }
115
116 client, err := a.buildHTTPClient(apiCall.Service)
117 if err != nil {
118 return nil, err
119 }
120
121 req, err := a.buildHTTPRequest(ctx, apiCall)
122 if err != nil {
123 return nil, fmt.Errorf("failed to build HTTP request for APICall %s:

%w", a.entry.Name, err)
124 }
125
126 resp, err := client.Do(req)
127 if err != nil {
128 return nil, fmt.Errorf("failed to execute HTTP request for APICall

%s: %w", a.entry.Name, err)
129 }
130
131 if resp.StatusCode < 200 || resp.StatusCode >= 300 {
132 b, err := io.ReadAll(resp.Body)
133 if err == nil {
134 return nil, fmt.Errorf("HTTP %s: %s", resp.Status,

string(b))
135 }
136
137 return nil, fmt.Errorf("HTTP %s", resp.Status)
138 }
139
140 defer resp.Body.Close()
141 body, err := io.ReadAll(resp.Body)
142 if err != nil {
143 return nil, fmt.Errorf("failed to read data from APICall %s: %w",

a.entry.Name, err)
144 }
145
146 a.logger.Info("executed service APICall", "name", a.entry.Name, "len",

len(body))
147 return body, nil
148 }

Kyverno 2023 Security Audit Report

29 Ada Logics Ltd

The apiCall package allows Kyverno users to make HTTP requests to remote services and use
the data from the response to make decisions on admission requests. In case an attacker
establishes control over the remote service and is able to return a response of their choice, they
can crash Kyverno by draining resources of the host machine. To do this, they would need to
intercept the request from Kyverno and return a malicious response. A successful attack would
prevent Kyverno from validating workloads from other users. The attacker does not require
privileges in the cluster, i.e. they do not need to be able to make requests to the cluster to crash
Kyverno. As such, the attacker is remote and untrusted from the perspective of the cluster;
however, the attacker must escalate privileges outside of the cluster, or they must trick the
Kyverno admin to make requests to a malicious service to carry out this attack successfully.

Mitigation
Kyverno should check the size of the response body before reading it into memory.

Kyverno 2023 Security Audit Report

30 Ada Logics Ltd

Possible endless data attack from attacker-controlled
registry

Severity: Low

Status: fixed

Id: ADA-KYV-2023KANF

Component: Cosign Verifier

This is a vulnerability in a 3rd-party dependency of Kyverno, Cosign, which was identified in
collaboration between the Ada Logics auditors and the Kyverno team. Kyverno has two options
for verifying images: Notary and Cosign. We (the Kyverno team and Ada Logics) identified a
vulnerability in Cosign that could allow an attacker to carry out an endless data attack and
thereby launch a denial of service against the user of Cosign. The attack would result in Kyverno
running for a time controlled by an attacker, which would result in Kyverno spending excessive
time on a single request and preventing other users and requests from completing their
intended tasks. "Endless data attacks" in a supply-chain specific vulnerability class where an
attacker sends an endless stream of data to the victim, which causes the victim's systems to be
stuck on a single task.

An attacker would need to either control the registry that Cosign communicates with or
intercept tra�ic between Cosign and the registry and return the malicious response.

The issue existed in Cosigns FetchAttestations , which pulls the attestations of a signed entity
from a remote registry and reads each of them. Cosign did not enforce an upper limit to the
number of attestations it would process, and an attacker could return a high number of
attestations to launch the endless-data attack. The attestations did not need to be correct or
unique to act as a malicious payload.

The vulnerable API looks as such:

https://github.com/sigstore/cosign/blob/004443228442850fb28f248fd59765afad99b6df/pkg/cosign/fetch.go#L135-L196

135 func FetchAttestations(se oci.SignedEntity, predicateType string)
([]AttestationPayload, error) {

136 atts, err := se.Attestations()
137 if err != nil {
138 return nil, fmt.Errorf("remote image: %w", err)
139 }
140 l, err := atts.Get()
141 if err != nil {
142 return nil, fmt.Errorf("fetching attestations: %w", err)
143 }
144 if len(l) == 0 {
145 return nil, errors.New("found no attestations")
146 }
147
148 attestations := make([]AttestationPayload, 0, len(l))
149 var attMu sync.Mutex
150
151 var g errgroup.Group
152 g.SetLimit(runtime.NumCPU())
153
154 for _, att := range l {
155 att := att
156 g.Go(func() error {
157 rawPayload, err := att.Payload()
158 if err != nil {
159 return fmt.Errorf("fetching payload: %w", err)
160 }
161 var payload AttestationPayload
162 if err := json.Unmarshal(rawPayload, &payload); err != nil {
163 return fmt.Errorf("unmarshaling payload: %w", err)
164 }

Kyverno 2023 Security Audit Report

31 Ada Logics Ltd

165
166 if predicateType != "" {
167 var decodedPayload []byte
168 decodedPayload, err =

base64.StdEncoding.DecodeString(payload.PayLoad)
169 if err != nil {
170 return fmt.Errorf("decoding payload: %w",

err)
171 }
172 var statement in_toto.Statement
173 if err := json.Unmarshal(decodedPayload,

&statement); err != nil {
174 return fmt.Errorf("unmarshaling statement:

%w", err)
175 }
176 if statement.PredicateType != predicateType {
177 return nil
178 }
179 }
180
181 attMu.Lock()
182 defer attMu.Unlock()
183 attestations = append(attestations, payload)
184 return nil
185 })
186 }
187 if err := g.Wait(); err != nil {
188 return nil, err
189 }
190
191 if len(attestations) == 0 && predicateType != "" {
192 return nil, fmt.Errorf("no attestations with predicate type '%s'

found", predicateType)
193 }
194
195 return attestations, nil
196 }

Advisory Details
GHSA: GHSA-vfp6-jrw2-99g9 CVE: CVE-2023-46737

Kyverno 2023 Security Audit Report

32 Ada Logics Ltd

https://github.com/sigstore/cosign/security/advisories/GHSA-vfp6-jrw2-99g9

Remote user can make Kyverno users consume incorrect
image

Severity: High

Status: fixed

Id: ADA-KYV-2023LNAF

Component: Engine Registry Client

Kyverno is susceptible to a supply-chain vulnerability, which could allow an attacker to carry
out a Wrong So�ware Installation attack.

The root cause of this issue lies in how Kyverno generates the imageData from images
referenced by digests. The imageData map data structure allows Kyverno users to make granular
admission decisions against image manifests and stores data about an image such as reference,
registry and digest, and other data which images are usually referenced with. To obtain the
image data, Kyverno will resolve the image from the reference provided by the Kyverno admin
user who will reference an image by tag or digest.

When the image loader fetches the descriptor on this line:

https://github.com/kyverno/kyverno/blob/9361100f1761eec0e3cad6d389dd06d802b382ef/pkg/engine/context/loaders/image
data.go#L111

111 desc, err := client.ForRef(context.Background(), ref)

… which in turn gets the descriptor from FetchImageDescriptor from this line:

https://github.com/kyverno/kyverno/blob/9361100f1761eec0e3cad6d389dd06d802b382ef/pkg/engine/adapters/rclient.go#L2
4

24 desc, err := a.Client.FetchImageDescriptor(ctx, ref)

… Kyverno does not perform validation of the fetched descriptor on these lines:

https://github.com/kyverno/kyverno/blob/9361100f1761eec0e3cad6d389dd06d802b382ef/pkg/registryclient/client.go#L180-
L190

180 func (c *client) FetchImageDescriptor(ctx context.Context, imageRef string)
(*gcrremote.Descriptor, error) {

181 parsedRef, err := name.ParseReference(imageRef)
182 if err != nil {
183 return nil, fmt.Errorf("failed to parse image reference: %s, error: %v",

imageRef, err)
184 }
185 desc, err := gcrremote.Get(parsedRef, gcrremote.WithAuthFromKeychain(c.keychain),

gcrremote.WithContext(ctx))
186 if err != nil {
187 return nil, fmt.Errorf("failed to fetch image reference: %s, error: %v",

imageRef, err)
188 }
189 return desc, nil
190 }

As such, Kyverno trusts the registry to return the requested image descriptor; however, the
registry can be compromised and can be used to deliver a di�erent descriptor than the one
requested.

The problematic call is on this line:

Kyverno 2023 Security Audit Report

33 Ada Logics Ltd

https://github.com/kyverno/kyverno/blob/9361100f1761eec0e3cad6d389dd06d802b382ef/pkg/registryclient/client.go#L185

185 desc, err := gcrremote.Get(parsedRef, gcrremote.WithAuthFromKeychain(c.keychain),
gcrremote.WithContext(ctx))

On this line, Kyverno makes a call to a remote registry. If this registry is compromised, or the
attacker manages to intercept communication and control the response to Kyverno, they can
return a descriptor that the Kyverno user did not intend to consume.

The attacker has multiple ways to exploit this vulnerability. Consider this policy:

1 apiVersion: kyverno.io/v1
2 kind: ClusterPolicy
3 metadata:
4 name: resolve-image-to-digest
5 annotations:
6 policies.kyverno.io/title: Resolve Image to Digest
7 policies.kyverno.io/category: Other
8 policies.kyverno.io/severity: medium
9 kyverno.io/kyverno-version: 1.6.0
10 policies.kyverno.io/minversion: 1.6.0
11 kyverno.io/kubernetes-version: "1.23"
12 policies.kyverno.io/subject: Pod
13 policies.kyverno.io/description: >-
14 Image tags are mutable and the change of an image can result in the same tag.
15 This policy resolves the image digest of each image in a container and replaces
16 the image with the fully resolved reference which includes the digest rather

than tag.
17 spec:
18 background: false
19 rules:
20 - name: resolve-to-digest
21 match:
22 any:
23 - resources:
24 kinds:
25 - Pod
26 preconditions:
27 all:
28 - key: "{{request.operation || 'BACKGROUND'}}"
29 operator: NotEquals
30 value: DELETE
31 mutate:
32 foreach:
33 - list: "request.object.spec.containers"
34 context:
35 - name: resolvedRef
36 imageRegistry:
37 reference: "{{ element.image }}"
38 jmesPath: "resolvedImage"
39 patchStrategicMerge:
40 spec:
41 containers:
42 - name: "{{ element.name }}"
43 image: "{{ resolvedRef }}"

This policy mutates admission requests to have the reference that the registry returned. As
such, a malicious registry can control the accepted values of admission requests.

In this case, the user is able to control the reference to the resolvedImage by returning a
malicious digest from the call to the remote registry.

The workflow for exploiting this issue is as follows:

1. The Kyverno admin configures their deployment to allow certain admission requests
based on the data in the imageData data structure.

2. When the Kyverno admin deploys the rule to the cluster, Kyverno resolves the image
reference from a remote registry and fetches the additional data and the digest.

3. An attacker intercepts the request and returns malicious data from the registry, including a
digest that is di�erent from the one that the Kyverno admin user provided in the rule.

4. Kyverno stores the data from the registry as well as other data parts from the image
reference in the rule.

Kyverno 2023 Security Audit Report

34 Ada Logics Ltd

5. At this point, there are two attack vectors: Either the attacker makes their own request
with a digest that is di�erent from the digest from the initial rule, but that matches the
digest in the imageData map. This request gets accepted. Alternatively, if the Kyverno use
case allows it, a non-attacker makes an admission request to Kyverno with a digest that
di�ers from the rule or the imageData map, and Kyverno mutates (rewrites) the digest to be
the attacker-controlled digest.

The impact is limited to a small set of Kyverno users that fulfil all the following requirements:

1. The Kyverno user must reference images by digest.
2. The Kyverno user must make admission decisions based on the digest from the imageData

and not the digest that the user referenced initially.

If the Kyverno admin initially deploys policies that reference images by tags, then there is no
potential for increased privileges. #2 is important since the essence of this issue is that the
returned digest and the digest initially used may di�er. As such, when the Kyverno image
verifier makes admission requests based on the digest returned from the registry, it can make
decisions on a di�erent digest than the one the Kyverno user expects to be making admission
decisions against.

The attacker can make users consume the same image as the one from the initial rule but of a
di�erent digest. This is not a vulnerability in itself; For example, consuming the previous version
of a MySQL image is not necessarily insecure. The risk arises when the attacker knows of an
exploitable issue in di�erent versions of images than the Kyverno user intends to consume.
Alternatively, there can be scenarios where the attacker can release a new version of the image
to the remote registry with the same name. If the attacker can achieve this level of control, they
can achieve the highest level of impact for the Kyverno user; however, this requires that the
attacker obtain the highest level of privilege in the registry.

Advisory details
GHSA: GHSA-3hfq-cx9j-923w CVE: CVE-2023-47630

Kyverno 2023 Security Audit Report

35 Ada Logics Ltd

https://github.com/kyverno/kyverno/security/advisories/GHSA-3hfq-cx9j-923w

Type Confusion in Jmespath Execution

Severity: Low

Status: fixed

Id: ADA-KYV-2023ATTB

Component: go-jmespath

Kyvernos use of go-jmespath in the image extraction utility is susceptible to a type confusion.
On the following lines, Kyverno instantiates a new Jmespath Interface , creates a Query and
searches the query. The type confusion was a result of casting a nil -value into a string.

https://github.com/kyverno/kyverno/blob/ae1fa9b2600302e3ba5f90d3312467f647a9e441/pkg/utils/api/image.go#L107-L112

107 jp := jmespath.New(cfg)
108 q, err := jp.Query(jmesPath)
109 if err != nil {
110 return fmt.Errorf("invalid jmespath %s: %v", jmesPath, err)
111 }
112 result, err := q.Search(value)

With a well-cra�ed string, github.com/kyverno/go-jmespath.(*treeInterpreter).Execute() will
trigger a type confusion.

STACKTRACE

 panic: interface conversion: interface {} is nil, not string [recovered]
 panic: interface conversion: interface {} is nil, not string
goroutine 17 [running, locked to thread]:
main.catchPanics()
 ./main.1065168555.go:49 +0x27c
panic({0x40e5200?, 0x10c000ab8690?})
 runtime/panic.go:914 +0x21f
github.com/kyverno/go-jmespath.(*treeInterpreter).Execute(0x10c000e5ca80, {0x4, {0x0,
0x0}, {0x10c000a31800, 0x9, 0x10}}, {0x3f6ea40, 0x6519ca0})
 github.com/kyverno/go-jmespath@v0.4.1-0.20230705123211-d067dc3d6613/interpreter.go:93
+0x4585
github.com/kyverno/go-jmespath.(*treeInterpreter).Execute(0x10c000e5ca80, {0x4,
{0x3f6ea40, 0x10c00107f370}, {0x10c0009f5e00, 0x7, 0x8}}, {0x3f6ea40, 0x6519ca0})
 github.com/kyverno/go-jmespath@v0.4.1-0.20230705123211-d067dc3d6613/interpreter.go:85
+0x43d0
github.com/kyverno/go-jmespath.(*JMESPath).Search(0x0?, {0x3f6ea40?, 0x6519ca0?})
 github.com/kyverno/go-jmespath@v0.4.1-0.20230705123211-d067dc3d6613/api.go:37 +0x8f

This part of Kyverno is invoked as part of the image verification by imageVerifier.Verify . Below,
HasChanged() invokes the faulty execution path:

https://github.com/kyverno/kyverno/blob/ae1fa9b2600302e3ba5f90d3312467f647a9e441/pkg/engine/internal/imageverifier.g
o#L211-L240

211 func (iv *ImageVerifier) Verify(
212 ctx context.Context,
213 imageVerify kyvernov1.ImageVerification,
214 matchedImageInfos []apiutils.ImageInfo,
215 cfg config.Configuration,
216) ([]jsonpatch.JsonPatchOperation, []*engineapi.RuleResponse) {
217 var responses []*engineapi.RuleResponse
218 var patches []jsonpatch.JsonPatchOperation
219
220 // for backward compatibility
221 imageVerify = *imageVerify.Convert()
222
223 for _, imageInfo := range matchedImageInfos {
224 image := imageInfo.String()
225
226 if HasImageVerifiedAnnotationChanged(iv.policyContext, iv.logger) {

Kyverno 2023 Security Audit Report

36 Ada Logics Ltd

227 msg := kyverno.AnnotationImageVerify + " annotation cannot
be changed"

228 iv.logger.Info("image verification error", "reason", msg)
229 responses = append(responses,

engineapi.RuleFail(iv.rule.Name, engineapi.ImageVerify, msg))
230 continue
231 }
232
233 pointer := jsonpointer.ParsePath(imageInfo.Pointer).JMESPath()
234 changed, err := iv.policyContext.JSONContext().HasChanged(pointer)
235 if err == nil && !changed {
236 iv.logger.V(4).Info("no change in image, skipping check",

"image", image)
237 iv.ivm.Add(image, true)
238 continue
239 }
240

This issue was found by way of fuzzing Kyvernos invocation of go-jmespath . The fuzzer tests
(*context).HasChanged with a pseudo-random jmespath string, where the context has been

initialized with pseudo-random strings for its objects. This is an over-approximation of the
HasChanged API; Kyverno sanitizes the context objects before they reach this part of the image

verification workflow. The panic resulting from this type confusion is recoverable and would
not crash the Kyverno engine, nor would it have an e�ect on other users' ability to use the
Kyverno engine; it would prevent the user sending the admission request from completing
validation.

Kyverno 2023 Security Audit Report

37 Ada Logics Ltd

